If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X-14400=0
a = 1; b = 100; c = -14400;
Δ = b2-4ac
Δ = 1002-4·1·(-14400)
Δ = 67600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{67600}=260$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-260}{2*1}=\frac{-360}{2} =-180 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+260}{2*1}=\frac{160}{2} =80 $
| 12x-4=-4+9x | | 2x+5=3(X+2) | | -2(n+3)=8 | | 2-11x=-8-6x | | 21x+2=37+14x | | 5x+9=8-3x | | 2(y+2)=30 | | 9x+1=4+6x | | 6-1x=-15+2x | | t-3.1=98.6 | | (2x+3)2+(2x-3x)2=(8x+6)(x-1)+22 | | 3(2x-1)=x-7 | | 4y+6=58 | | N+3-4n=4 | | 5x-1/4=11 | | 30+x+1=65 | | 2x=200+4 | | 7x+14=5x+14 | | 7x+14=5x+15 | | 0.8(x+2)-0.72(x+1)=0.06(x+40) | | y-12+12=23 | | 56+148+x=180 | | 53x+5x+67=63 | | 3x+2/4=9 | | 7w-5=65 | | -2x=-6=4 | | 5x+2=2x=3x+8 | | 4(x-1)=2(6-2x)4 | | 12x+15x+36=36 | | x=100/450 | | u+45=100 | | 42x+4=3 |